Journal of Organometallic Chemistry, 182 (1979) C1-C4 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

BASICITY OF TRANSITION METAL CARBONYL COMPLEXES

XII*. REACTIONS OF $C_5H_5M(CO)(NO)(PPh_3)$ COMPLEXES (M = Mo, W) WITH APROTIC ACIDS

A.G. GINZBURG*, V.N. SETKINA and D.N. KURSANOV

Institute of Organo-Element Compounds, USSR Academy of Sciences, Moscow 117813, Vavilova st 28 (U.S.S.R.)

(Received September 7th, 1979)

Summary

The aprotic acids $HgCl_2$ and $SnCl_4$ react with the complexes $C_5H_5Mo(CO)$ -(NO)(PPh₃) (M = Mo, W) by electrophilic attack at the transition metal centre. In the case of $SnCl_4$ the initial reaction is followed by elimination of Cl^- . This reaction can be viewed as a S_N displacement of chloride by the transition metal centre.

We have earlier studied the reactions with aprotic acids and the basicity of $C_5H_5M(CO)_2L$ (I) complexes, where M = Mn [1,2] or Re [2,3] and $L = PPh_3$. Pursuing systematic investigation of the basicity of π -complexes of transition metals, we have studied the reactions with aprotic acids of complexes of Group VIB metals which are isoelectronic with I and corresponding to the formula $C_5H_5M(CO)(NO)(PPh_3)$ (II), where M = Mo (IIa) or W (IIb).

 $\Pi M = Mo, W.$

*For part XI, see ref. 1.

The addition of equimolar amounts of $HgCl_2$ to solutions of complexes IIa and IIb in CH_2Cl_2 results in the formation of covalent neutral adducts $C_5H_5M_{(CO)}(NO)(PPh_3)(HgCl_2)*$ (IIIa and IIIb) with $\nu(CO)$ and $\nu(NO)$ in their IR spectra increased by 60–70 cm⁻¹ as compared to the initial II, which indicates to the coordination of $HgCl_2$ with the central atoms of Mo and W.

Compounds IIa and IIb rapidly react with an excess of SnCl₄ in CH₂Cl₂ with the formation of complexes IVa and IVb. An ionic structure for IV is indicated by the substantially higher values of $\Delta \nu$ (CO), 155 and 150 cm⁻¹, and $\Delta \nu$ (NO), 140 and 135 cm⁻¹, when passing from II to IV, as compared to values of $\Delta \nu$ (CO) and $\Delta \nu$ (NO) of 60–70 cm⁻¹ in the formation of the covalent complexes III from II.

The structure of IVa (M = Mo) is proven by the data from a preliminary X-ray structural analysis. Cation IVa has the structure of a square pyramid with a C_5H_5 ligand at apex and CO and NO ligands in the *trans*-positions at the pyramid base (the angle CO-Mo-NO being about 107°).

Complex IVb (M = W) is stable, whereas complex IVa in CH_2Cl_2 in the presence of an excess $SnCl_4$ readily undergoes oxidative elimination of CO with the formation of a covalent complex Va (ν (NO) 1680 cm⁻¹); its structure is being studied now by X-ray structural analysis.

^{*}All the compounds obtained were characterized by elemental analysis.

Under the conditions studied $(CH_2Cl_2, 20^{\circ}C)$ the complex $C_5H_5Mo(CO)_2(NO)$ containing no donor ligand PPh₃ does not react with HgCl₂ and SnCl₄. Therefore, basicity of the metal central atoms is increased with substitution of one CO group by the donor phosphine ligand. The Mo and W centres in II, like the Mn and Re centres in I are the regions with the highest basicity and the sites of attack by aprotic acids.

At present there are available numerous data on the basicity of π -complexes of transition metals. Analysis of the literature allows us to draw the conclusion that in half-sandwich complexes with one η^5 -cyclopentadienyl or η^6 -benzene ligand of the general formula $(\eta^n - C_n H_n) M L_m$ (wherein m is 2 or 3 and L is the twoelectron ligand CO and/or tertiary phosphine), attack by an electrophilic reagent E is likely to be always initially directed towards the central metal atom, leading to the formation of a M—E bond (E = H⁺, R⁺, RCO⁺, halogens, aprotic acids, etc.). The data listed in Table 1 show that this conclusion is of an adequately general character, since it is valid for the majority of transition metals of Groups VI—VIII and electrophilic reagents of different natures.

TABLE 1

REACTIONS OF π -COMPLEXES OF GROUP VI—VIII METALS WITH VARIOUS ELECTROPHILIC REAGENTS WITH ATTACK AT THE METAL ATOM

Group VI Cr. Mo. W		Group VII Mn, Tc, Re		Group VIII			
				Fe, Ru, Os		Co, Rh, Ir	
Complex	Ref.	Complex	Ref.	Complex	Ref.	Complex	Ref.
C ₆ H ₆ Cr(CO) ₃	4	$C_{s}H_{s}Mn(CO)_{r}L^{a}$	1,2	C, H, FeL, C	14	C,H,Co(CO),	7
CH Mo(PR)	5		_	C, H, RuL, b	6	C, H, CoL, b	8
C ₅ H ₅ Mo(CO)(NO)(L) ⁴	^t this work					$C_{5}H_{5}RhL_{2}^{b}$	9.
$C_5H_5W(CO)(NO)(L)^a$	this work	$C_{5}H_{5}Re(CO)_{2}L^{a}$	2,3		_	$C_5 H_5 Ir(CO)(L)^a$	10, 11

^a $\mathbf{L} = PPh_3$; ^b $\mathbf{L} = PMe_3$; ^c $\mathbf{L} = P(OMe)_3$

It should be noted that in the second stage of the reaction after the formation of the M—E bond, there may in certain cases take place a reversible or irreversible migration of the electrophile E onto the cyclic ligand with the formation of the final products of the reaction [12,13]:

Formation of complexes IV, as well as the earlier described $[C_5H_5Mn(CO)_2-(PPh_3)(SnCl_3)]^+SnCl_5$ [1] and similar rhenium derivatives [3] may be regarded as S_N at the tin atom resulting in substitution of Cl⁻ by neutral nucleophiles $C_5H_5M(CO)(PPh_3)(L)$, where L = CO for M = Mn and Re, and L = NO for M =

Mo and W. By analogy to the usual O-, S- and N-nucleophiles, these nucleophiles may be referred to as M-nucleophiles. A specific feature of reactions of Mnucleophiles with SnCl₄ is that at an excess of SnCl₄ the escaping anion Cl⁻ may give the anion $SnCl_{5}^{-}$ with a second $SnCl_{4}$ molecule. Depending on how strongly nucleophilic the M-nucleophile is (i.e. how high is the metal basicity), substitution of Cl^{-} is possible not only in $SnCl_4$, but in alkyltin chlorides as well. Thus, the very strong nucleophile C₅H₅Rh(PMe₃)₂ substitutes Cl in Me₃SnCl and Me₃GeCl [9].

The structure and properties of the products of the interaction of II with $SnCl_4$ and $SnBr_4$ will be described in more detail in a later paper.

References

- 1 A.G. Ginzburg, N.G. Bokyi, A.I. Yanovsky, Yu.T. Struchkov, V.N. Setkina and D.N. Kursanov, J. Organometal. Chem., 136 (1977) 45.
- 2 A.G. Ginzburg, G.K.I. Magomedov, S.S. Frenkel', V.N. Setkina and D.N. Kursanov, Izv. Akad. Nauk SSSR, Ser. Khim., (1978) 2405. 3 A.G. Ginzburg, V.N. Setkina and D.N. Kursanov, Izv. Akad. Nauk SSSR, Ser. Khim., (1979) 894.
- 4 C.P. Lillya and R.A. Sahatjian, Inorg. Chem., 11 (1972) 889.
- 5 M.L.H. Green, L.C. Mitchard and W.E. Silverthorn, J. Chem. Soc., Dalton, (1974) 1361.
- 6 H. Werner and R. Werner, Angew. Chem., 90 (1978) 721.
- 7 I.W. Nowell and D.R. Russel, J. Chem. Soc., Dalton, (1972)2393.
- 8 H. Werner and W. Hoffmann, Chem. Ber., 110 (1977) 3481.
- 9 H. Werner, R. Feser and W. Buchner, Chem. Ber., 112 (1979) 834.
- 10 A.I. Hart-Davis and W.A.G. Graham, Inorg. Chem., 9 (1970) 2658.
- 11 A.I. Oliver and W.A.G. Graham, Inorg. Chem., 9 (1970) 2653.
- 12 H. Werner and W. Hoffmann, Angew. Chem., 89 (1977) 835.
- 13 G.K. Turner, W. Klaui, M. Scotti and H. Werner, J. Organometal. Chem., 102 (1975) C9.
- 14 S.T. Ittel and C.A. Tolman, J. Organometal. Chem., 172 (1979) C47.